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ABSTRACT: This is a practice-led, conceptual paper describing selected means for action learning and 

concept motivation at all levels of mathematics education. It details the approach used by the authors to devise 

insights for practitioners of mathematics teaching. paper shows that this approach in mathematics education 

based on action learning in conjunction with the natural motivation stemming from common sense is effective. 

Also, stimulating questions, computer analysis (internet search included), and classical famous problems are 

important motivating tools in mathematics, which are particularly beneficial in the framework of action 

learning. authors argue that the entire K-20 mathematics curriculum under a single umbrella is practicable when 
techniques of concept motivation and action learning are in place throughout that broad spectrum. argument is 

supported by various examples that could be helpful in practice of school teachers and university instructors. 

authors found pragmatic cause for action learning within mathematics education at virtually any point in student 

academic lives. 

 

I. INTRODUCTION 
Nowadays, students require both cognitive 

and practical experiences throughout the continua of 

their mathematics education to be productive 21st 

century citizens. Genesis of  his statement can be 

traced back to the writings of John Dewey, who 

emphasized the importance of educational activities 
that include “the development of artistic capacity of 

any kind, of special scientific ability, of effective 

citizenship, as well as professional and business 

occupations” ([1], p.307). More recently, Billett [2], 

based on his studies of integrating learning 

experiences of tertiary students in the disciplines 

related to nursing and like services in support of 

human needs, suggested that “it might be possible to 

fully integrate practice-based experiences within the 

totality of higher education experiences that are 

generative of developing robust and critical 
occupational knowledge” (p.840). main argument of 

the present paper is that in the context of 

mathematics education, action learning (the concept 

introduced in Section 3) is the very process to impart 

these experiences in conjunction with concept 

motivation (a term introduced in Section 2) when 

teaching mathematics across the entire K-20 

curriculum. To this end, this practice-led, conceptual 

paper, detailing the approach used by the authors to 

devise insights for practitioners of mathematics 

teaching, offers a survey of selected means for action 
learning across the formal mathematics education 

continuum. To a certain extent, this paper promotes 

the idea of learning through practice [3] in the 

context of mathematics education. Arguments 

supporting the value of action learning for all 

individuals involved (at the college level, adding to 

the duo of student and mathematics instructor a third 

community or university non mathematics 

professional) are presented  

(Sections 2–4). Also considered is integration of 

computer-assisted signature pedagogy (CASP) and 

non digital technology as well as effective 

questioning with action learning (Sections 5 and 6). 

Students may joyfully experience formal 
mathematics education for twenty years or more, and 

they can be motivated everywhere across the 

expansive mathematics curricula. Action learning in 

mathematics education combined with rote theory 

brings mathematical topics to the real world. 

Naturally, primary-level instances are of foundational 

importance, and this is reinforced with secondary-

level action learning (Sections 4.1.1 and 4.1.2). open 

problems of mathematics can often be introduced to 

students in primary, secondary, and tertiary education 

(Section 7). Traditionally, classic results and open 

problems serve to motivate not only the students but 

also the educators themselves. Since effective 

mathematics teachers are needed, action learning 

should be used promotionally at all levels of 

mathematics education, knowing that future 

instructors are amongst the current student 

population. Certainly, the possibility of being 

involved in discovery is highly motivational to all, 

including students and mathematics teachers, at least. 

 

II. CURIOSITY AND MOTIVATION 
Though the necessity of mathematical 

learning at the primary, secondary, and tertiary 

schools is common knowl-edge, the question on how 
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to teach mathematics is controversial. As described 

in more detail in [4], with ref-erences to [5–10], the 

controversy is due to a non-homogeneity of teacher 

preparation programs, the formalism versus meaning 

disagreement among mathematics faculty, and 

various perspectives on the use of technology. We 

believe that an appropriate way to teach mathematics 

at all levels is to do it through applications rather 

than to use traditional lectures, emphasizing the 

formalism of mathematical machinery. Real-life 
applications keep concerned people motivated while 

learning mathematics. natural motivation can be 

considered as an age-dependable process spanning 

from natural childhood curiosity in the primary 

school to true intellectual curiosity at the tertiary 

level. Regardless of the age of learners, one can see 

curiosity as motivation “to acquire or transform in-

formation under circumstances that offer no 

immediate adaptive value for such activity” ([11], p. 

76). is, curiosity and motivation are closely related 

psychological traits. 
Most of the studies on the development of 

curiosity deal with the primary education. However, 

these studies can inform our understanding of how 

curiosity turns into a motivation to become high-

quality professional. For ex-ample, Vidler [12] 

distinguished between epistemic and perceptual 

curiosity, which are manifested, respectively, by 

“enquiry about knowledge and is shown, for 

example, when a child puzzles over some science 

problem he has come across . . . [and] increased 

attention given to objects in the child’s immediate 
environment as, for example, when a child stares 

longer at an asymmetrical rather than a symmetrical 

figure on a screen” (p. 18). Likewise, adult learners 

at the tertiary level can become motivated by their 

mathematics instructor’s call for questions 

concerning information that was shared or by their 

experiences with the world around them as they try 

to interpret “the fabric of the world . . .[using] some 

reason of maximum and minimum” (Euler, cited in 

[13], p. 121). 

Related to the tertiary level, Vidler [14] 
defined achievement motivation as “a pattern of . . . 

actions . . . connected with striving to achieve some 

internalized standard of excellence” (p. 67). are also 

adult learners who“are interested in excellence for its 

own sake rather than for the rewards it brings” ([14], 

p. 69). Biggs [15] admits that intrinsic motivation in 

the study of mathematics is associated with “the 

intellectual pleasure of problem solving 

independently of any rewards that might be involved 

. . . [suggesting that] the aims of deep learning and of 

achievement motivation ultimately diverge” (p. 62). 

A classic example in support of this suggestion is a 
solution of the (century old) Poincare conjecture by 

geometer Grigory Perelman who, after almost a 

decade of “deep learning,” declined several 

international awards for his work including the Fields 

Medal (the mathematician’s “Nobel Prize”) and ($1 

million) Clay Millennium Prize 

(https://www.claymath. org/). 

As curiosity is the genesis of motivation to 

learn, Mandelbrot [16], in a plenary lecture on 

experimental geometry and fractals at the 7th 

International Congress on Mathematical Education, 

advised the audience of mostly precollege 

mathematical educators of how to pivot on curiosity 
when teaching mathematics: “Motivate the students 

by that which is fascinating, and hope that the 

resulting enthusiasm will create sufficient momentum 

to move them through that which is no fun but is 

necessary” (p. 86). It is this kind of motivation that 

the authors describe as concept motivation. More 

specifically, in this paper, the term concept 

motivation means a teaching strategy through which, 

using curiosity of students as a pivot, the introduction 

of a new concept is justified by using it as a tool in 

applications to solving real problems. For example, 
the operation of addition can be motivated by the 

need to record the aug-mentation of a large quantity 

of objects by another such quantity, the concept of 

irrational number can be motivated by the need to 

measure perimeters of polygonal enclosures on the 

lattice plane (called the geoboard at the primary 

level), or the concept of integral can be motivated by 

the need to find areas of curvilinear plane figures. 

Another mathematically relevant instrument 

of motivation is concreteness. According to David 

Hilbert, mathematics begins with posing problems in 

the context of concrete activities “suggested by the 
world of external phenomena” ([17], p. 440). We 

believe that “concreteness” is an appropriate 

synonym for motivation as it relates to mathematics 

education. term concrete itself indicates that a variety 

of ingredients are brought together and synthesized. 

goal of learning mathematics is to concretize notions, 

both theoretical and applied. It is helpful to have a 

precise understanding of something. Humans 

inherently wish to have “full” knowledge of certain 

things. By knowing details, and concretizing ideas, 

we reduce anxiety associated with describing and 
using those ideas. Concreteness motivates all parties 

involved in mathematics education. Even at the 

administrative level, there is understanding that “the 

FKL [Foundations of Knowledge and Learning] Core 

Curriculum will provide you with the opportunity to 

explore a variety of vital areas of study, making you 

more aware and engaged in understanding the 

challenges that our global realities require” ([18], 

italics added), where the “realities” is given our 

emphasis. is motivation for everybody, since we 

would all like to make use of mathematical theory or, 

at least, see it applied. Consequently, motivation is 
proportionally higher for adult learners over children 

who may not see “usefulness” in mathematics. At the 

https://www.claymath.org/
https://www.claymath.org/
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University of South Florida, instructors of certain 

courses (the calculus sequence, for example) are 

asked to include the FKL statement in their syllabi. 

Until recently, the terms “industrial” and 

“technical” had rather pejorative connotations in 

mathematics education. Traditional formal lecturing 

is still dominant in most classrooms. However, there 

is often some “industry” or “technique” in examining 

mathematical theory, so these two notions are not 

complimentary. It is hard to identify a part of the 
massive volume of K-20 mathematics curricula 

which precludes either theory or eventual real-world 

application. Furthermore, theory is implicitly 

included in STEM education due to its science 

component. 

In the context of mathematics teacher 

education, a focus on applications gives future 

teachers one very important ability of exemplifying 

mathematical ideas in ways which are usable. Ability 

can then be imparted to their own students. One can 

recognize at the precollege level that mathematics 
knowledge stems from the need to resolve real life 

situations of different degrees of complexity. 

Curriculum principle put forth by the National 

Council of Teachers of Mathematics [19] includes 

the notion that all students at this level should be 

offered experiences “to see that mathematics has 

powerful uses in modeling and pre dicting real-world 

phenomena” (pp. 15-16).  Emphasis on applications 

goes beyond the precollege level. Indeed, 

mathematics has been greatly developing and 

penetrating all the spheres of life, making collegiate 

mathematics education a necessary yet controversial 
element of the modern culture. 

 

III. ACTION LEARNING 
Many people are pragmatic by doing what 

works. When something does not work, one is 

compelled to ask questions as to how to make it 

work. Beginning from the 1940s, Reginald Revans 

started developing the action learning concept, a 

problem-solving method characterized by taking an 
action and reflecting on the results, as an educational 

pedagogy for business development and problem-

solving [20, 21]. Since that time, action learning has 

come to describe a variety of forms it can take and 

contexts it can be observed. In the context of 

achieving high quality of university teaching, “the 

target of action learning is the teaching of the 

individual teacher” ([22], p. 7). In the general context 

of improving professional performance, Dilworth 

[23] argues that action learning starts with an inquiry 

into a real problem so that regardless whether the 
problem is “tactical or stra-tegic. . . [the process of] 

learning is strategic” (p. 36). Action learning in 

mathematics education can be defined as learning 

through student individual work on a real problem 

followed by reflection on this work. In most cases, 

this work is supported by a “more knowledgeable 

other.”  

 In mathematics education, action learning, 

the genesis of which is in the early childhood 

experience, has natural levels of maturity. Before we 

become concerned with the day-to-day 

responsibilities attached to adulthood, we can freely 

consider action learning in a game form. Our 

fondness for gaming and for learning winning 

strategies are carried into later life, both as means of 
entertainment and as a tool for instructing the next 

generation of children. motivation for action learning 

in mathematics education gradually changes from 

winning games to success in real-world ventures. key 

to success is the ability to solve problems. Research 

finds that curiosity can be characterized in terms of 

excitement about peculiar observations and 

unexpected phenomena [24]. Additionally, “What 

children will be curious about depends in large part 

on the nature of the world about them and their 

previous experience” ([12], p. 33). Students at all 
educational levels seek concreteness, are naturally 

curious about the real world, and enjoy benefits of 

action learning, especially when they use it 

repeatedly in mathematics education. In particular, in 

the postsecondary mathematics curriculum for non-

mathematics majors, the problems should have 

applicability to reality. Interestingly, we seem to 

return to “gaming” when we deal with pure theory, 

since we might seek an abstract solution for the sake 

of solution itself.  

Max Wertheimer, one of the founders of Gestalt 

psychology, argued that for many children, “it makes 
a big difference whether or not there is some real 

sense in putting the problem at all” ([25], p. 273). He 

gave an example of a 9-year-old girl who was not 

successful in her studies at school. In particular, she 

was unable to solve simple problems requiring the 

use of basic arithmetic. However, when given a 

problem which grew out of a concrete situation with 

which she was familiar and the solution of which 

“was required by the situation, she encountered no 

unusual difficulty, frequently showing excellent 

sense” ([25], pp. 273-274). Put another way, the best 
strategy to develop students’ interest in a subject 

matter is to focus teaching on topics that are within 

their basin of attraction. As William James, a classic 

of American psychology, who was the first to apply 

it to the education of teachers, put it, “Any object not 

interesting in itself may become interesting through 

becoming associated with an object in which an 

interest already exists” ([26], p. 62). Interest can be 

also used to develop motivation in education as it 

“refers to pattern of choice among alter-natives—

patterns that demonstrate some stability over time 

and that do not appear to result from external 
pressures” ([27], p. 132). 
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Reflection is as important as action. Being 

able to reflect on action carried out constitutes the so-

called internal control when individuals think of 

themselves as being responsible for their own 

behavior, something that is different from external 

control when seeing others or circumstances being 

the primary motivation for an individual 

behavior[28] basic questions commonly begin the 

action learning process in addressing a real problem. 

We ask: First, what should be happening? Second, 
what is stopping us from doing it? what can we do? 

Action learning (often referred to in academia as 

action research [29, 30]) has been traditionally used 

for teaching business management and the social 

sciences [31, 32], conducting scientific research [33], 

and teacher development [22, 34–36]. In 

mathematics education [4, 37], action learning, as a 

teaching method, has been adopted as pedagogy 

oriented on self-solving real problems followed up 

by reflection. Learning is the primary goal, even 

though the problem-solving is real and important. 
Learning is facilitated by breaking out well-

established mind-sets, thereby presenting a somewhat 

unfamiliar setting for the problem. We now have the 

technology-assisted, action learning pedagogy for 

teaching mathematics through real-world problems, 

guided by STEM instructors and community 

professionals, employing a project component [4]. 

Digital technology is seen at least within the requisite 

typology of the manuscripts. It may go much further, 

of course, and include an essential utility (e.g., a 

numerical integrator, a spreadsheet, or specialized 

software). Finally, action learning (with origins in 
business education [20, 21]) provides an effective 

and clear approach to mathematics education. 

approach was developed out of different (and, as 

mentioned at the be-ginning of Section 2, sometimes 

controversial) active learning techniques which are 

ubiquitous among mathe-matics educators across a 

variety of constructivist-oriented, student-centered 

teaching contexts [38–41]. 

 

IV. ACTION LEARNING IN THE 

PRACTICE OF MATHEMATICS 

EDUCATION 
Our USF-SUNY team [4] has established 

that action learning is a positive pedagogical feature 

throughout all grade levels (K-20). One may argue 
that since many people are lifelong learners, some of 

us may employ action learning (perhaps as 

mathematics instructors) beyond K-20. Our 

motivation to action learning mathematics can give 

young students a taste of the interesting things known 

of mathematics. Underlying concepts can be quite 

sophisticated and students may return to the ideas 

and take them further as they gather experience. 

Examples of action learning are presented in the 

subsections below by instruction level. examples are 

given with an emphasis on the goal of concreteness, 

which in turn motivates the learners. Employing a 

project component makes the “one + two” 

Mathematics Umbrella model available at the tertiary 

level (Section 4.2.2). 

4.1. Motivation and Action Learning at the 

Primary and Secondary Levels. At the primary 

school level, mathematical concepts can be 

motivated through the appropriately designed hands-

on activities supported by manipulative materials. 
Such activities have to integrate rich mathematical 

ideas with familiar physical tools. As was mentioned 

above, an important aspect of action learning is its 

orientation towards gaming. A pedagogical 

characteristic of a game in the context of tool-

supported mathematics learning is one’s “thinking 

outside the box,” something that in the presence of a 

teacher as a “more knowledgeable other “opens a 

window to students future learning. Nonetheless, the 

absence of support can be observed, as Vidler [12] 

put it, “when a child stares longer at an asymmetrical 
rather than a symmetrical figure” (p. 18) recognizing 

intuitively, through perceptual curiosity, that stability 

of a figure depends on its position. is, perceptual 

curiosity combined with creative thinking often 

transcends activities designed for one level and 

merges into the study of more advanced ideas at a 

higher cognitive level. following two sections 

demonstrate how the use of two-sided counters and 

square tiles, physical tools commonly used nowadays 

in the elementary mathematics classroom, can 

support, respectively, the introduction of Fibonacci 

numbers, allowing one through the use of computing 
to open a window to the concept of the Golden Ratio, 

and to connect the construction of rectangles (out of 

the tiles) to the discussion of special numeric 

relationships between their perimeters and areas. In 

both cases, the transition from the primary level to 

the secondary one can be facilitated by the use of 

digital technology.is, mathematical ideas, born in the 

context of action learning with physical tools, can be 

extended to a higher level through computational 

experiments supported by digital tools. 

4.1.1. From Two-Sided Counters to the 
Golden Ratio through Action Learning. Consider the 

following action learning scenario: Determine the 

number of different arrangements of one, two, three, 

four, and so on two-sided (red/yellow) counters in 

which no two red counters appear consecutively. 

Experimentally, one can conclude that a 

single counter can be arranged in two ways, two 

counters in three ways, three counters in five ways, 

and four counters in eight ways (Figure 1). In 

particular, Figure 1 shows that all the arrangements 

with four counters can be counted through recursive 

addition 3 + 5 � 8 as they can be put in two groups 
so that in the first group (with cardinality three), the 

far-right counter is red, and in the second group (with 
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cardinality five), the far-right counter is yellow. By 

putting this idea into action under the guidance of a 

teacher, a young student can discover that the next 

iteration (five counters–13 ways, as 13 � 5 + 8) 

agrees with the description of Figure 1. Augmenting, 

for consistency, the sequence 2, 3, 5, 8, 13 by two 

ones (assuming that an empty set of counters has 

only one arrangement) allows one to describe the 

completion of the above action learning scenario 

(that is, reflecting on the results of acting on concrete 
materials according to a certain rule) through the 

sequence 1, 1, 2, 3, 4, 5, 8, 13, . . ., (in which the first 

two numbers are equal to one and every number 

beginning from the third is the sum of the previous 

two numbers)—one of the most celebrated number 

sequences in the entire mathematics named after 

Fibonacci (1270–1350), the most prominent Italian 

mathematician of his time. As part of reflection on 

the scenario, young students can be told that as 

esoteric as Fibonacci numbers might seem, they are 

likely to encounter them again. 
Indeed, at the secondary level, Fibonacci 

numbers Fn can be explored in terms of the ratios of 

two consecutive terms, (Fn+1/Fn). To this end, one 

can use a spreadsheet to demonstrate that the ratios 

(Fn+1/Fn) approach the number 1.61803 as n 

increases, regardless of the first two terms of the 

sequence, F and F . exact value of limn 

∞(Fn+1/Fn) � (1 + 5 )/2, the number known as the 

golden ratio. is an example of how the use of a 

computer can provide students and their teachers 

alike with an in-formal bridge connecting a lower 

cognitive level with a higher one. Without the ease of 
calculating the ratios of two consecutive Fibonacci 

numbers provided by a spreadsheet, it would be 

much more diffcult to connect a simple action 

learning activity of a specific arrangement of two-

sided counters to a cognitively more complex idea of 

the convergence of the ratios to a number known 

from antiquity as the golden ratio. Motivated by a 

computer, the golden ratio can be discovered in the 

context of exploring a special number sequence 

describing an action learning problem appropriate for 

young children. In other words, a computer can 
naturally open a window to students’ future action 

learning (see a note about Alzheimer’s research in 

Section 6 below). 

In connection with the use of two-sided 

counters in the context of Fibonacci numbers, it 

should be noted that many teacher candidates believe 

that concrete materials can only be utilized at the 

elementary level and beyond that level, they are of no 

use. With this in mind, the authors would like to 

argue that, just as with Fibonacci numbers, concrete 

ma-terials can be used to introduce rather 

sophisticated concepts in order to add the factor of 
concreteness to the study of abstract ideas. In 

particular, two-sided counters can serve as an 

embodiment of binary arithmetic in an introductory 

computer science course. More specifically, if one 

writes down the first 16 natural numbers in the 

binary form, then, with the support of two-sided 

counters, one can see the following. are two one-digit 

numbers with no 1’s appearing in a row (no red 

counters back to back), three two-digit numbers with 

no 1’s appearing in a row, five three-digit numbers 

with no 1’s appearing in a row, and eight four-digit 

numbers with no 1’s appearing in a row. numbers 2, 
3, 5, and 8 are consecutive Fibonacci numbers which, 

thereby, can be used as bits of students’ previous 

knowledge in developing new ideas through action 

learning. For more secondary (and tertiary)-level 

explorations with Fibonacci numbers, see [43]. 

Evidently, motivation becomes connected to 

an antici-pated future success as a consequence of 

adolescence. Stu-dents now seek greater 

concretization of concepts. When students at the 

secondary level have strong motivation for action 

learning, they can, and do, produce undergraduate-
quality projects, as described for undergraduates in 

Section 4.2 below. is a gradual sense of “seriousness” 

that accompanies “mature” project work. fine 

examples of action learning of secondary-level 

students performing on a college level are seen with 

Lauren Woodbridge’s Publix delivery project “Pallet 

Physics” ([44], v. 3, 2(8)), Bo Moon’s quantum 

computation project “ Subset Sum Problem: 

Reducing Time Complexity of NP-Completeness 

with Quantum Search” ([44], v. 4, 2(2)), Logan 

White’s rocket project “Modeling Rocket Flight in 

the Low-Friction Ap-proximation” ([44], v. 6, 1(5)), 
and Roshan Warman’s spin-based computing project 

“Spintronic Circuits: Building Blocks of Spin-based 

Computation” ([44], v. 7, 1(1)). 

 

4.1.2. Creativity and Action Learning. 

Humans are creative when they are motivated, and 

one may be more creative following general, 

formative concretizations of ideas. It is important to 

recognize student creativity early. Educators see 

creativity as “one of the essential 21st century skills . 

. .vital to individual and organizational success” 
([45], p. 1). Teachers’ ability to recognize creativity 

of their students that may be hidden behind their 

immature classroom performance is critical for 

successful teaching and productive learning. 
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FIGURE  2: Eight tiles—two rectangles with no 

windows 

FIGURE 3: A rectangle (Square) with a square 

window 

 

If students’ hidden creativity is not 

acknowledged and supported by a teacher, it would 

most likely remain dormant if not vanish [46]. 

following story, drawn from a second-grade 

classroom, supports the notion that teachers are the 
major custodians of unfolding the creative potential 

of young children. 

An elementary teacher candidate, working 

individually with a second-grade student (under the 

supervision of the classroom teacher), asked him to 

construct all possible rectangles out of ten square 

tiles (a real problem for grade two), expecting the 

student to construct two rectangles, 1 by 10 and 2 by 

5, each of which representing a multiplication fact 

for the number 10, something that would be studied 

later (in grade three). teacher candidate was surprised 
to see three rectangles as shown in Figure 2. A large 

number of teaching ideas for action learning can stem 

from the ac-ceptance of the rectangle with a hole 

which manifests the child’s hidden creativity. Some 

ideas can be connected with secondary mathematics. 

To clarify, consider exploring the relationship 

between area and perimeter of this rectangle with a 

hole, counting both external and internal perimeters 

(a teacher-guided reflection on taking action by a 

student using concrete materials). One can see that 

the area is 10 square units and the perimeter is 20 

linear units. is, numerically, perimeter is twice the 
area. Comparing areas with perimeters of rectangles 

has been known from the time of Pythagoras [47]. In 

the action learning fashion, a situation to be explored 

can be as follows: Are there other rectangles with 

rectangular holes for which the perimeter is twice the 

area? To this end, at the secondary level, one can 

introduce four variables, a, b, c, and d, as lengths and 

widths of the larger and smaller rectangles. From 

here, the relation ab −cd � a + b + c + d follows. 

Using Wolfram Alpha—a computational knowledge 

engine available free online—one can ask the 
program to solve the above equation over the positive 

integers. following result would follow: 

Setting a � b � 3, one can choose c � 1 

whence d � 1. gives us a square with a square hole 

(Figure 3). example shows how knowing algebra and 

affordances of technology can inform practicing 

teachers’ work with young children in promoting 

critical thinking and fostering creativity. is, once 

again, technology serves as an informal bridge moti-

vating connection between two different grade levels 

of mathematics curriculum. Whereas a teacher may 

not nec-essarily see a rich learning milieu behind a 
nontraditional response by a student, the very fact 

that such a response has been accepted and praised 

would motivate this and other students to continue 

being “out of the box” thinkers. 

To conclude this section, note that the 

troika, an ele-mentary student, a classroom teacher, 

and a teacher can-didate, can be compared in the 

context of action learning with that of an 

undergraduate student, a mathematics fac-ulty, and a 

subject area advisor as described below in Section 

4.2.2. similarity of the two milieus (years apart) is in 

double supervision of a student action learning of 
mathe-matics by a duo of “more knowledgeable 

others.” 

 

4.2. Undergraduate Mathematics and Action 

Learning 

4.2.1. Comprehending Abstractness with 

Learning by Doing. Mathematics language is abstract 

with greater abstraction at higher levels. 

Traditionally, university mathematics for non-

mathematics majors is taught by distancing it from 

reality with no connection to students’ professional 
interests. In this setting, quite a number of soon-to-be 

professionals do not see the importance of 

mathematics in their prospective fields [48]. 

Furthermore, abstractness in teaching often re-sults 

in the problem of communication. As noted in [49], 

in connection with teaching engineering 

mathematics, there may be discordance between 

terminology and ideas used by a lecturer 

mathematician and their interpretation by the 

students. As a result of being too theoretical, 

mathematics education at the university level 

becomes ineffective: non-mathematics majors study 
the subject matter “because they have to.” An 

alternative approach to mathematics education is 

based on the well-known and pragmatic notion of 

“learning by doing” (e.g., [50–54]) which makes it 

possible a meaningful interplay of pure and applied 

ideas. approach has great potential to bring 

experiential learning to calculus—a basic course 

sequence in the tertiary mathematics curriculum. 

 

 
(i) Significantly increased motivation and STEM 

retention 

(ii) Real-life problems in the field of interest 

(iii) Better  understanding and  retention of calculus                                                     

                                                                  
 (iv) Connecting with the  professional community 

 (v) Opportunities for  research 
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4.2.2. Mathematics Umbrella Model. entire 

collegiate mathematics curriculum for non-

mathematics majors can benefit from action learning. 

It is found that, particularly at the collegiate level, 

there should be a “middle-of-the-road” stance on the 

relative weights given to theory and application. 

Mathematics Umbrella Group (MUG) at the 

University of South Florida (USF), initiated by 

Arcadii Grinshpan in 1999 [55], takes this “stance.” 

It bridges the gap between mathematics education 
and applications, while inspiring STEM students to 

attain the mathematics skills essential for success in 

their respective disciplines. initiative led to the 

development of the Mathematics Umbrella model in 

STEM education involving hundreds of 

interdisciplinary (mathematics application) student 

projects. In the ten years since reporting that the 

MUG program was the first organization to facilitate 

personalized mathematics projects, dually advised by 

both mathematics and subject area advisors, for 

teaching no mathematics majoring STEM students 
[56], MUG has remained unique in this distinction. 

Each project is completed under double supervision: 

a mathematics advisor (mathematics faculty) and a 

subject area advisor (university or community 

professional) who usually suggests a problem [4, 48, 

55, 57–59]. 

The hallmark of MUG is its stratagem of 

interconnecting one undergraduate student with at 

least two professionals. situation is illustrated in 

Figure 4. As a result, students are exposed to a wider 

range of expertise than is normally privy to the 

mathematics instructor alone. 
Another strong feature is the community ties 

which are possible or the interdisciplinary connection 

that at least takes place beyond the institution’s 

mathematics faculty. Action learning brings “reality” 

to the abstractions of mathematics. Even when 

mathematics instructors try to supply problems with 

applications, the usefulness is not known firsthand 

until the students put it to use. is a motivational 

approach for all parties in the trio. Students may later 

elect to conduct research in connection with their 

project experiences. Also, they are likely to retain the 
concepts involved longer than they might have in the 

“pure lecture”approach. 

 

4.2.3. Action Learning in Upper-Level 

Calculus Courses. Action learning is a strong 

motivating factor for all par-ticipants involved in the 

Mathematics Umbrella Group. factor seems to be a 

common thread throughout the K-20 action learning 

spectrum. participants’ interest in action learning 

may be proportional to individual experience. 

Mathematics instructors may potentially get the 

biggest benefit, but students are expected to know 
enough of the theory to be motivated as well. For the 

undergraduate mathematics courses such as calculus 

II and III, it is deemed sufficient for students to 

prevail on several smaller tests and homework 

assignments and then to devote their energies toward 

action learning, rather than requiring them to succeed 

on the final examination. In particular, this action 

learning pedagogy helps students who are 

“marginally successful” by allowing their final 

grades to include an action learning component 

which is justifiably given significant weight in the 
overall grading for the course. 

More often, there are “standard achievers” 

who may be very productive with their action 

learning projects. is the potential for students’ work 

to be published, or perhaps even honored [4, 57], as 

many students have been over the past two decades. 

are fine motivators for all parties involved in an 

action learning endeavor. Since action stems from 

motivation, it is important to recognize the role of 

“action motivators.” For the tertiary students, a 

powerful motivator is often in learning something 

useful and something on which to build or enhance a 
successful career. 

Notably, students are naturally motivated by 

success in their mathematics courses. influence of 

action learning has been analyzed at the University of 

South Florida in courses of engineering calculus 

involving thousands of students enrolled in these 

courses and follow-up courses from Spring 2003 to 

Spring 2015 [59]. Some results (grouped by race and 

ethnicity) are given in Figure 5 [59]. figure shows the 

effect of action learning, concurrent nonaction 
learning sections, and historical (traditional) sections. 

portion of the investigation involved 1589 action 

learning students and 1405 students from courses not 

using the action learning element. Finally, 2316 

others were labeled “historical,” meaning that they 

had taken the course before Spring 2003 (i.e., before 

such a distinction was made as to using or not using 

action learning in their courses). researchers were 

careful to include confidence intervals for their 

results. It is apparent that in this relatively large 

subgroup from the larger study, all four of the 

race/ethnicity categories favor being the action 
learning participants.There is a lot of information 

from [59] for consideration. At any rate, this and 

other results demonstrate the academic su-periority in 

action over nonaction learning. pragmatic conclusion 

is to provide action learning, since it works. 

4.2.4. Action Learning as a Universal 

Educational Concept.Motivation for mathematics 

instructors derives from exposure to new experiences 

with action learning.  There are now many hundreds 

of action learning projects on record, representing a 

wide range of topics. Additionally, there is always 
some fine action learning going on, which is never 

documented. Of those projects which are available in 

the Undergraduate Journal of Mathematical 

Modeling: One + Two (UJMM) [44], it is evident 
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that virtually all fields can employ action learning. 

are projects dealing with very specific branches of 

engineering, such as biomedical nanotechnology. 

There are also many other projects outside of 

“engineering proper,” like those featuring music or 

even education. Others are cross-field types which 

defy clear categorization. bridge types are quite often 

of special interest. It motivates educators to see what 

comes up in the mix and which fields may be 

connected through action learning. are the 
interdisciplinary features desired in all of curricula 

(in the “curriculum universe” that is education). 

Some details are available from the main 

Mathematics Umbrella Group website (see Center for 

Industrial and Interdisciplinary Mathematics).  

journal displays a select subgroup of more than 2400 

student projects submitted since 2000. An indication 

of the diverse nature of project topics and student 

contributors is evident from the variety of subject 

matters seen in the latest UJMM titles ([44], v. 8, 1-

2): “Application of Simple Harmonics Modeling a 
Shock” by Kai Raymond, “ Forces Affecting a 

Sailboat” by Kelly Stukbauer, “Optimization of a 

Fuel Cell” by Eduardo Gines, “Analysis of Rainfall 

in Tampa” by Amy Polen, “Approximating Surface 

Area of Fluctuating Lipid Leaflets Using Weighted 

Grid Tessellation” by Ahnaf Siddiqui, “Rudimentary 

Model of Glucose Response to Stress”by Nasha 

Rios-Guzman, “Organic Agricultural 

Analysis:Effciency of Common Practices” by 

Bradley Biega, “Using the Entropy Rate Balance to 

Determine the Heat Transfer and Work in an 

Internally Reversible, Polytrophic, Steady State Flow 
Process” by Savannah Griffn, “Model Function of 

Women’s 1500 m World Record Improvement over 

Time” by Annie Allmark, “Polycrystalline Silicon 

Solar Power Max” by Jaynil Patel, “Optimization of 

a Water Gas Shift Reaction” by Ali Albuloushi, and 

“Tsunami Waves” by Samantha Pennino. 

In addition to the many published 

undergraduate pro-jects, there are “action learning 

scenarios,” which might be viewed as amalgams of 

different action learning experiences. Several 
idealistic problems have this mixed experience 

derivation. problems might be considered typical of 

what might be considered in a project, rather than 

being actual examples. scenarios provide 

mathematics in-structor motivation to include action 

learning with the usual largely theoretical course 

content. experiences would likely be shared by any 

mathematics instructors having similar positions in 

mathematics education. immediate motivation here is 

to expand our understanding of the re-lationship 

between mathematics theory and solving actual 

problems in the real world. 
 

V. MOTIVATING QUESTIONS AS THE 

MAJOR MEANS OF LEARNING 

MATHEMATICS 
5.1. Questions as Instruments of Action 

Learning. Questions posed generally become more 

sophisticated as students mature. Instructors at all 

levels of mathematics education use knowledge and 

experience to answer questions. Con-crete and 

confident responses are desired, with the occa-sional 

possibility (generally at higher levels) that questions 

may require additional reflection prior to their 

exposition. In the context of problem-posing and 

problem-solving, it is important that one 

distinguishes between two types of questions that can 
be formulated to become a problem: questions 

seeking information and questions requesting 

explanation of the information obtained [60]. Similar 

to two types of signs—the first-order symbols and 

the second-order symbolism [61] —one can refer to 

questions seeking in-formation as the first-order 

questions and those requesting explanation as the 

second-order questions [46]. Whereas the first-order 

questions can be answered using different methods, it 

appears that not all methods can be used to provide 

an explanation of what was obtained in search for 
information, that is, to provide an answer to a 

second-order question. Often, the request for 

explanation is an intelligent reflection on a method 

that provided information. 

What does it mean that teachers need to 

possess “deep understanding” of mathematics? Why 

do they need to have such understanding? are several 

reasons for pro-spective teachers to be thoroughly 

mathematically prepared in order to have positive 

effects on the progress of young learners of 

mathematics. First, in the modern mathematics 
classroom, students of all ages are expected and even 

en-couraged to ask questions. In the United States, 

the national standards already for grades pre-K-2 

suggest, “Students’ natural inclination to ask 

questions must be nurtured.[even] when the answers 

are not immediately obvious” ([19], p. 109). Support 

to this suggestion can be found in the following 

comment by an elementary teacher candidate: “It is 

okay not knowing the answer to the question but it is 

not okay with leaving that question unanswered.” 

candidate describes herself as “the type of educator 
that will always encourage my students to ask 

themselves some of those same questions that will 

allow them to participate in some pro-found 

thinking.” 

5.2. International Character of Learning 

through Asking Questions. Just across the border 

with the United States, the Ontario Ministry of 

Education in Canada, through their mathematics 

curriculum for early grades, sets expectations for 

teachers to be able to “ask students open-ended ques-

tions. . . encourage students to ask themselves similar 
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kinds of questions. . . [and] model ways in which 

various kinds of questions can be answered” ([62], p. 

17). In order to develop such proficiency, “teachers 

should know ways to use mathematical drawings, 

diagrams, manipulative materials, and other tools to 

illuminate, discuss, and explain mathe-matical ideas 

and procedures” ([63], p. 33). In Chile, mathematics 

teachers are expected to “use representations, call on 

prior knowledge, put forward good questions, and 

stimulate an inquisitive attitude and reasoning among 
students” ([64], p. 37). In Australia, mathematics 

teachers know how to motivate “curiosity, challenge 

students’ thinking, negotiate mathematical meaning 

and model mathematical thinking and reasoning” 

([65], p. 4). repertoire of learning opportunities the 

teachers offer to their students includes continuous 

search for alternative approaches to solving problems 

as well as helping students to better learn a specific 

problem-solving strategy with which they have been 

struggling. National mathematics curriculum in 

England uses such terms as “practice with 
increasingly complex problems over time . . . [and] 

can solve problems. . with increasing sophistication” 

([66], p. 1). Towards this end, teachers have to be 

prepared to deal with situations when natural quest 

for inquiry leads students towards this sophistication 

and increase in complexity of mathematical ideas. 

need for this kind of teacher preparation is confirmed 

by a teacher candidate who put it as follows: “If a 

student asks why, and a teacher cannot explain how 

something has come to be, the student loses all faith 

and interest in the subject and respect for the 
teacher.” 

At the undergraduate level, second-order 

questions are often discussed. Mathematics 

instructors are aware that such questions can be 

valuable for stimulating further inquiries. It may be 

true that mathematics encountered at the primary and 

early secondary levels should be unimpeachably un-

derstood by mathematics instructors and that students 

can be “sure” of what is taught. When we begin 

dealing with, say set theory or two/three-dimensional 

geometry, there can be enigmatic results which truly 
stimulate learners to consider studying higher 

mathematics. curiosities of mathematics are the 

things which learners are likely to find attractive. 

Certainly, it is good for the mathematics instructor to 

have deep understanding of the topic; however, there 

may be details to an answer which defy immediate 

conjuring. In a few rare cases, an answer is not even 

available. It is expected that students’ maturity will 

allow them to accept that at the higher mathematics 

levels they are not to lose faith and respect for the 

instructor, if an explanation is deferred. At earlier 

stages in mathematics education, learners believe that 
mathematics is perfect. However, mathematics is just 

as imperfect as anything else devised by human 

beings. Stu-dents should know this. 

VI. COMPUTER-ASSISTED SIGNATURE 

PEDAGOGY AND THE 3P MODEL OF 

LEARNING AND TEACHING 
Curiosity and motivation can also be 

supported by the use of digital tools as instruments of 

action learning. As it was shown through examples 

from precollege mathematics education, computers 

can facilitate a transition from one cognitive level to 

another (higher) one. is consistent with the modern-

day use of computers in mathematics research when 

new results stem from computational ex-periments. 

For example, the joy of transition from visual to 

symbolic when two-sided counters were suggested as 

means of recursively developing Fibonacci numbers, 
which could then be modelled within a spreadsheet 

where, perhaps by serendipity, a definitive pattern in 

the behavior of the ratios of two consecutive terms 

could be discovered. discovery motivates the formal 

explanation of why the ratios behave in a certain 

way. Likewise, the transition from numeric de-

scription of rectangles in terms of perimeter and area 

leads to their formal representation. While a 

rectangle with a hole was discovered by thinking 

“out of the box,” the availability of a digital tool 

facilitates the transition from visual to symbolic with 

the subsequent use of the latter representation in a 
mathematical modeling situation. 

The power of computational modeling can 

serve as a motivation for developing and then 

exploring more com-plicated recurrence relations 

than that of Fibonacci num-bers. As discussed in 

[58], the use of spreadsheet modeling can be applied 

in the context of Alzheimer’s research to study 

transgenic mice population focusing on a financial 

feasibility of purchasing two parent mice (male and 

female) and raising a population of mice of a 

specified size. An effective approach to this problem 

involves the theory of recurrence relations that 

originally were introduced at the secondary level 

through Fibonacci numbers. results obtained through 

spreadsheet modeling can then be used to verify 

theoretical results. For more details on this project, 

see [55]. 

All this leads to the notion of computer-

assisted sig-nature pedagogy (CASP) when 

encouraging reflection and supporting analysis of the 

action taken by a student in the context of action 

learning provides CASP with the deep (rather than 
surface) structure of teaching [67] employed by a 

teacher as a “more knowledgeable other.” Similarly, 

in an earlier publication, Biggs [15] distinguished 

between the surface and the deep structures of 

student approaches to learning by describing the 

former approach in terms of a student “investing 

minimal time and effort consistent with appearing to 

meet requirements . . . [whereas the latter approach 

is] based on interest in subject matter of the task; the 

strategy to maximize understanding” (p. 6). By 
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adapting Dunkin and Biddle’s [68] the presage-

context-process-product model of classroom 

teaching, Biggs [15] in-troduced now famous 3P 

model of student learning pivoted by student believes 

about learning in general and their current learning 

milieu (presage), student approach to learning 

(process), and student learning outcome (product). 

An inquiry into how the fist P of the model affects its 

second P and, as a consequence, the third P was 
carried out by Lizzio, Wilson, and Simons [69] who 

came out with seven theoretical propositions. One of 

those propositions was based on an argument that if 

university students perceive their professors’ 

teaching of courses as robust, then they are more 

likely to select the deep approach to learning. authors 

found this argument to be true not only for the case 

of tertiary mathematics content courses but also for 

mathematics methods courses for prospective school 

teachers. In the modern-day teaching of mathematics, 

the appropriate use of technology is an important 

characteristic of the learning environment. In 
particular, in the context of student approach to 

learning at the deep structure under the umbrella of 

CASP, one can amplify the use of a single digital 

tool like a spreadsheet by other modern technologies 

such as Wolfram Alpha. To this end, CASP, 

structured by the deep approaches to teaching and 

learning, can include the use of the so-called 

integrated spreadsheets [70] which support 

mathematics teaching at all educational levels with 

computational robustness of student learning. 

 

VII. PROBLEMS AND CONJECTURES 

THAT INSPIRE AND MOTIVATE 
The student of mathematics (at any level of 

education) is likely to encounter exposure to the 

“futility” of mathematical perfection. In 

mathematics, there are easily expressed questions 

(conjectures) which defy answers (proof). It seems to 
be analogous to the Heisenberg uncertainty principle 

where there are “limits to precision” in finding both 

position and momentum, for example. important 

notion is that there are not always “standard” 

solutions to mathematical problems. Knowing this, 

students can possibly develop further mathematics to 

resolve some problems. is a “nonstandard” action 

learning at work in these cases. initial pondering is 

largely theoretical, but eventually an application will 

be summoned. Notice that the problem need not even 

be solved, much is bound to be learned in the 
attempt. process is motivational. Also, the reflection 

brings concreteness to the concepts within the 

problem and relates to the overall “nature” of 

problems and problem-solving. 

Real-life applications of mathematics 

provide a great deal of stimulation for various kinds 

of research in the subject matter field, involving 

professional mathematicians and students of different 

majors alike. is not to say that applied mathematics is 

the only meaningful source of the development of 

mathematical thought. Indeed, there are many 

problems within mathematics itself that used to 

motivate and keep motivating those who seek to gain 

full appreciation of mathematics as a fundamental 

science. Some of these problems (sometimes referred 

to as conjectures) can be recommended to be a part 

of mathematics curriculum for non-mathematics 

majors as well as for teacher candidates. authors’ 
experience indicates that theorems and con-jectures 

with origins in both pure and applied mathematics 

have the potential to trigger imagination and thought 

process of those whose mind is open to challenge. 

For example, the statements and historical 

details of such exciting problems as Fermat’s Last 

proved by Andrew Wiles [71] and Bieberbach’s 

conjecture proved by De Branges [72] (see also [73]) 

may be included into some basic mathematics 

courses for nonmathematics majors. Proofs of these 

theorems not only require more than ele-mentary 
means but also are enormously complex. However, 

as Stewart [74] noted, “the fact that proof is 

important for the professional mathematician does 

not imply that the teaching of mathematics to a given 

audience must be limited to ideas whose proofs are 

accessible to that audience” (p. 187). Let us take a 

look at them. 

Fermat’s Last states that equation xn + yn = 

zn has no nonzero integer solutions for x, y, and z 

when n >2. In particular, this theorem can be 

introduced to different populations of mathematics 
students as a way of answering the question: Is it 

possible to extend the interpretation of Pythagorean 

triples as partitioning a square into the sum of two 

squares to include similar representations for higher 

powers? As detailed elsewhere [75], the use of a 

spreadsheet with secondary teacher candidates 

enables a way of visualizing Fermat’s Last by 

modeling non existing solutions to the above 

equation for n >2 in much the same way as for n = 2. 

Likewise, it is quite possible that with the help of 

technology or through other means, a natural bridge 
between the statement of Fermat’s Last and some 

geometric properties of modular elliptic curves in 

Wiles’s proof will be accessible to future 

mathematics students. 

Bieberbach conjecture states that for each n = 2, 3, 

. . . 

and  each  analytic  function  f(z) = z + a2z2 + a3z3 + 

. . . 

that is one-to-one in the unit disk D = {z : |z|

 1}, the inequality |an| ≤n holds. legendary 

result with its stunning record alone (see, e.g., [76]) 

can inspire students’ interest in learning such 
important mathematical concepts as one-to-one 

functions, power series, convergence, and Taylor co-

efficients which, in particular, are appropriate to be 
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discussed with engineering majors. deep geometric 

roots of the Bieberbach conjecture are worth 

mentioning here as well. For example, its proof for n 

= 2 is based on presenting a plane set area as a 

contour integral and thus it is accessible to non-

mathematics majors enrolled in an upper-level 

calculus course. 

There is also famous Goldbach’s conjecture [77] 

which asserts that every even number greater than 

two can be written as the sum of two prime numbers 
(perhaps, in more than one way). It would be 

miraculous, if the conjecture was found to be false. 

So far, no counter example has been found. While 

searching for a counter example seems fruitless, it 

has been shown empirically that Goldbach’s 

conjecture is true for all even numbers greater than 

two and less than some known number having 17 

digits. 

Another famous yet easy to understand 

problem is the Palindrome conjecture [78]. It deals 

with the property of palindromes (i.e., integers that 
read the same backward as forward) to attract whole 

numbers under the following procedure: start with 

any whole number, reverse its digits, and add the two 

numbers; repeat the process with the sum and 

continue to see that it leads to a palindrome. Re-

markably, this “number game” has been mentioned 

recently as one of the twelve unsolved problems in 

contemporary mathematics [79]. It is this problem 

and as noted in the Principles and Standards for 

School Mathematics [19], its educational potential 

for middle school students to “ap-preciate the true 

beauty of mathematics” (p. 21), that mo-tivated a 
secondary teacher candidate to work with one of the 

authors on developing computational learning envi-

ronments for instructional presentation of and experi-

mentation with a large class of recreational problems 

both solved and unsolved [80]. As Gauss put it, “In 

arithmetic the most elegant theorems frequently arise 

experimentally as the result of a more or less 

unexpected stroke of good fortune, while their proofs 

lie so deeply embedded in darkness that they defeat 

the sharpest inquiries” (cited in [81], p. 112). 

It appears that using technology for 
meaningful experimentation with numbers under the 

umbrella of CASP has the potential to inspire and 

motivate students already at the precollege level 

towards new discoveries in elementary number 

theory. By expanding our understanding of 

mathematics in any way, we potentially expand our 

ability to “flourish.” is the inherent value and 

motivation for action learning. All of mathematics is 

conjectured to provide applications. We only need be 

motivated to devise those applications. 

 

VIII. CONCLUSION 
This paper, using the authors’ experience in 

mathematics teaching and supervising applications of 

the subject matter in the practice of public schools 

and industry, introduced the framework of the joint 

use of action learning and concept motivation in the 

context of K-20 mathematics education. Different 

examples of the action learning—an individual work 

on a real problem followed by reflection under the 

supervision of a “more knowledgeable other”—have 

been provided. Such supervision may include a “duo 

of others”—a classroom teacher and a teacher 
candidate in a K-12 school, and mathematics faculty 

and subject area advisor at a university. paper has 

demonstrated that action learning of mathematics 

goes hand in hand with concept motivation—a 

teaching methodology where the introduction of 

mathematical concepts is motivated by (grade 

appropriate) real-life applications which may include 

student action on objects leading to formal 

description of this action through the symbolism of 

mathematics. approach is based on notable 

recommendations by mathematicians [5, 16, 17] and 

educational psychologists [1, 25, 26, 61]. 
The main concluding message of the paper 

is that by repeatedly utilizing concept motivation and 

action learning at all levels of mathematics 

education, overall student success has great potential 

to improve. message is sup-ported by examples of 

creative thinking of young learners in the classroom 

grounded in comprehensive collaboration of school 

teachers and university faculty (in the spirit of the 

Holmes Group [82]). Likewise, the message was 

supported by examples of student interest in the 

study of calculus through action learning in a real-life 
setting. It appears that the emerging student interest 

in mathematics is due to action learning and concept 

motivation having been used to rectify the 

widespread formalism in mathematics teaching 

which, in particular, has become an obstacle to the 

success of STEM education [4, 7, 8]. When students 

have experience with action learning of mathematics 

during their school years, they are likely to continue 

learning the subject matter in the same vein, thereby 

avoiding many bumps of the secondary-tertiary 

transition. As mentioned in Section 4.2.3, research on 
implementing action learning of engineering 

calculus, involving thousands of students at the 

University of South Florida [4, 59], indicates that 

while students’ interest in action learning may be 

proportional to an individual experience of that kind, 

their learning outcomes demon-strate academic 

superiority of action learning over other pedagogical 

means of calculus delivery. 

At the onset of formal mathematics 

education, school-children should begin experiencing 

action learning and concept motivation pedagogy 

enhanced, as appropriate, by asking and answering 
questions and learning to use tech-nology. As was 

shown in the paper, not only K-12 mathe-matics 

curricula of many countries support student learning 
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through asking questions but also their future 

teachers appreciate that kind of mathematical 

learning. Likewise, computer-assisted signature 

pedagogy [37] can be used to maximize student 

understanding of mathematics and to encourage their 

deep approach to learning [15]. University 

undergrads have greater motivation than 

schoolchildren in order to handle the responsibilities 

of adulthood. Yet, both populations of students can 

still be motivated by their natural “age-defying” 
curiosity. In this regard, stimulating questions, the 

affinity for using computers, and classical famous 

problems are important motivating tools in the study 

of mathematics. Subsuming the entire K-20 mathe-

matics curriculum under a single umbrella is 

practicable when techniques of concept motivation 

and action learning are in place throughout that 

educational spectrum. Finally, there is clearly a 

pragmatic reason for exposing students to the action 

learning rainbow, and that is because among today’s 

students are tomorrow’s teachers. process should 
continue to flourish. 

 

REFERENCES 
[1]. J. Dewey, Democracy and Education, Free 

Press, New York, NY, USA, 1916. 

[2]. S. Billett, “Realising the educational worth of 

integrating work experiences in higher 

education,” Studies in Higher Education, vol. 34, 

no. 7, pp. 827–843, 2009. 
[3]. S. Billett, “Learning in the circumstances of 

practice,” In-ternational Journal of Lifelong 

Education, vol. 34, no. 7, pp. 827–843, 2014. 

[4]. S. Abramovich, J. Burns, S. Campbell, and A. Z. 

Grinshpan, “STEM education: action learning in 

primary, secondary, and post-secondary 

mathematics,” IMVI Open Mathematical 

Education Notes, vol. 6, pp. 65–106, 2016. 

[5]. H. Bass, “Mathematicians as educators,” Notices 

of the American Mathematical Society, vol. 44, 

no. 1, pp. 18–21, 1997. 
[6]. J. Baumert, M. Kunter, W. Blum et al., 

“Teachers’ mathe-matical knowledge, cognitive 

activation in the classroom, and student 

progress,” American Educational Research 

Journal, vol. 47, no. 1, pp. 133–180, 2010. 

[7]. Executive Office of the President, Engage to 

Excel: Producing One Million Additional 

College Graduates with Degrees in Science, 

Technology, Engineering, and Mathematics, 

President’s Council of Advisors on Science and 

Technology, Washington, DC, USA, 2012. 
[8]. E. M. Friedlander, T. S. Holm, J. Ewing et al., 

“Mathemati-cians’ central role in educating the 

STEM workforce,” 2012, 

http://www.ams.org/policy/govnews/pcast-

statement. 

[9]. D. Guin and L. Trouche, “ complex process of 

converting tools into mathematical instruments: 

the case of calculators,” International Journal of 

Computers for Mathematical Learning, vol. 3, 

no. 3, pp. 195–227, 1999. oner,¨ and E. de Shalit, 

[10]. P. W.  Thomson,M. Artigue, G. Toner, E. de 

Shalit“Collaboration between mathematics and 

mathematics edu-cation,” in Mathematics and 

Mathematics Education: Searching for the 

Common Ground, M. Fried and T. Dreyfus, 
Eds., pp. 313–333, 2014. 

[11]. N. Livson, “Towards a differentiated construct of 

curiosity,” Journal of Genetic Psychology, vol. 

111, no. 1, pp. 73–84,1967. 

[12]. D. C. Vidler, “Curiosity,” in Motivation in 

Education, S. Ball, Ed., pp. 17–43, Academic 

Press, New York, NY, USA, 1977. 

[13]. G. P´olya, Induction and Analogy in 

Mathematics, Vol. 1, Princeton University Press, 

Princeton, NJ, USA, 1954. 

[14]. D. C. Vidler, “Achievement motivation,” in 
Motivation in Education, S. Ball, Ed., pp. 67–89, 

Academic Press, New York, NY, USA, 1977. 

[15]. J. Biggs, “What do inventories of students’ 

learning processes really measure? A theoretical 

review and clarification,” British Journal of 

Educational Psychology, vol. 63, no. 1, pp. 3–

19, 1993. 

[16]. B. B. Mandelbrot, “Fractals, the computer, and 

mathematics education” in Proceedings of the 

7th International Congress on Mathematical 

Education (Plenary lectures), C. Gaulin, B. R. 
Hodson, D. H. Wheeler, and J. C. Egsgard, Eds., 

pp. 77–98, Les Presses de L’universite´ Laval, 

Sainte-oy, Quebec,´ Canada, August 1994. 

[17]. D. Hilbert, “Mathematical problems,” Bulletin 

of the Ameri-can Mathematical Society, vol. 8, 

no. 10, pp. 437–480, 1902. 

[18]. USF, “FKL core curriculum for students,” 2018, 

https://www. usf.edu/undergrad/fkl/.National 

Council of Teachers of Mathematics, Principles 

and Standards for School Mathematics, National 

Council of Teachers of Mathematics, 
Washington, DC, USA, 2000. 

[19]. R. Revans, Action Learning: New Techniques 

for Management, Blond & Briggs, London, UK, 

1980. 

[20]. R. Revans, Origin and Growth of Action 

Learning, Chartwell-Bratt, Brickley, UK, 1982. 

[21]. J. Biggs, Teaching for Quality Learning at 

University: What the Student Does, Society for 

Research into Higher Education & Open 

University Press, Philadelphia, PA, USA, 2003. 

[22]. R. Dilworth, “Action learning in a nutshell,” 

Performance Improvement Quarterly, vol. 11, 
no. 1, pp. 28–43, 1988. 

[23]. D. Beswick, “ and measurement of human 

curiosity,” Unpublished Doctoral Dissertation, 

http://www.ams.org/policy/govnews/pcast-statement
http://www.ams.org/policy/govnews/pcast-statement


International Journal of Engineering Research and Application                    www.ijera.com ISSN : 

2248-9622, Vol. 6, Issue 7, ( Part -5) July 2016, pp.63-77 

 
www.ijera.com                                                                                                                                      75 | P a g e  

 

 

 
 

 

Harvard University, Cambridge, MA, USA, 

1965. 

[24]. M. Wertheimer, Productive , Harper & Brothers, 

New York, NY, USA, 1959. 

[25]. W. James, Talks to Teachers on Psychology, 

Harvard University Press, Cambridge, MA, 

USA, 1983. 

 

[26]. L. W. Rust, “Interests,” in Motivation in 

Education, S. Ball, Ed., pp. 131–146, Academic 
Press, New York, NY, USA, 1977. 

[27]. G. C. Fanelli, “Locus of control,” in Motivation 

in Education, S. Ball, Ed., pp. 45–66, Academic 

Press, New York, NY, USA, 1977. 

[28]. J. Elliott, Action Research for Educational 

Change, Open University Press, Buckingham, 

UK, 1991. 

[29]. D. Kember, Action Learning and Action 

Research: Improving the Quality of Teaching 

and Learning, Kogan Page, London, UK, 2000. 

[30]. A. Lizzio and K. Wilson, “Action learning in 
higher education: an investigation of its potential 

to develop professional ca-pability,” Studies in 

Higher Education, vol. 29, no. 4,469–488, 2007. 

[31]. I. Naftalin, “Action learning in higher 

education,” Educational Management and 

Administration, vol. 24, no. 2, pp. 193–205, 

1996. 

[32]. D. Greenwood and M. Levin, Introduction to 

Action Research, Sage Publications, Oaks, CA, 

USA, 2nd edition, 2007. 

[33]. L. Norton, Action Research in Teaching and 

Learning: A Practical Guide to Conducting 
Pedagogical Research in Universities, 

Routledge, New York, NY, USA, 2009. 

[34]. L. Phillips, Using Action Learning to Support 

the Development of Primary Teachers’ 

Mathematical Knowledge, National Teacher 

Research Panel, Coventry, UK, 2010. 

[35]. G. J. Pine, Teacher Action Research: Building 

Knowledge Democracies, SAGE Publications, 

Oaks, CA, USA,2008. 

[36]. S. Abramovich, J. Easton, and V. O. Hayes, 

“Parallel structures of computer-assisted 
signature pedagogy: the case of in-tegrated 

spreadsheets,” Computers in the Schools, vol. 

29, no. 1-2, pp. 174–190, 2012. 

[37]. C. Kyrlacou, “Active learning in secondary 

school mathe-matics,” British Educational 

Research Journal, vol. 18, no. 3,309–318, 1992. 

[38]. J. S. Rosenthal, “Active learning strategies in 

advanced mathematics classes,” Studies in 

Higher Education, vol. 20, no. 2, pp. 223–228, 

1995. 

[39]. N. F. Ellerton, “Engaging pre-service middle-

school teacher-education students in 
mathematical problem posing: devel-opment of 

an active learning framework,” Educational 

Studies in Mathematics, vol. 83, no. 1, pp. 87–

101, 2013. 

[40]. M. Kogan and S. L. Laursen, “Assessing long-

term effects of inquiry-based learning: a case 

study from college mathe-matics,” Innovative 

Higher Education, vol. 39, no. 3,183–199, 2014. 

[41]. S. Abramovich and G. A. Leonov, “Fibonacci 

numbers revisited: technology-motivated inquiry 

into a two-parametric difference equation,” 

International Journal of Mathematical Education 

in Science and Technology, vol. 39, no. 6, pp. 

749–766, 2008. 

[42]. S. Abramovich and G. A. Leonov, Revisiting 

Fibonacci Numbers through a Computational 

Experiment, Nova Science Publishers, New 

York, NY, USA, 2019. 

[43]. Undergraduate Journal of Mathematical 

Modeling: One + Two, 2019, 

http://scholarcommons.usf.edu/ujmm/. 

[44]. A. Beghetto, J. Kaufman, and J. Baer, Teaching 
for Creativity in the Common Core Classroom, 

Columbia University, New York, NY, USA, 

2015. 

[45]. S. Abramovich, Integrating Computers and 

Problem Posing in Mathematics Teacher 

Education, World Scientific, Singapore, 2018. 

[46]. B. L. Van der Waerden, Science Awakening, 

Oxford University Press, New York, NY, USA, 

1961. 

[47]. S. Abramovich and A. Z. Grinshpan, “Teaching 

mathematics to non-mathematics majors through 
applications,” Primus, vol. 18, no. 5, pp. 411–

428, 2008. 

[48]. W. Maull and J. Berry, “A questionnaire to elicit 

the math-ematical concept images of engineering 

students,” In-ternational Journal of Mathematical 

Education in Science and Technology, vol. 31, 

no. 6, pp. 899–917, 2000. 

[49]. J. Dewey, How we A Restatement of the 

Relation of Reflective to the Educative Process, 

Heath, Boston, MA, USA, 1933. 

[50]. L. V. Ahlfors, “On the mathematics curriculum 

of the high school,” American Mathematical 
Monthly, vol. 69, no. 3, pp. 189–193, 1962. 

[51]. R. Noss and C. Hoyles, “ visibility of meaning: 

modeling the mathematics of banking,” 

International Journal of Computers for 

Mathematical Learning, vol. 1, no. 1, pp. 3–31, 

1996. 

[52]. C. R. Hadlock, Mathematical Modeling in the 

Environment,Mathematical Association of 

America, Washington, DC, USA, 1998. 

 

[53]. A. E. Kelly, R. A. Lesh, and J. Y. Baek, 
Handbook of Design Research Methods in 

Education: Innovations in Science, Technology, 

Engineering, and Mathematics Learning and 



International Journal of Engineering Research and Application                    www.ijera.com ISSN : 

2248-9622, Vol. 6, Issue 7, ( Part -5) July 2016, pp.63-77 

 
www.ijera.com                                                                                                                                      76 | P a g e  

 

 

 
 

 

Teaching, Routledge, New York, NY, USA, 

2008. 

[54]. A. Z. Grinshpan, “ Mathematics Umbrella: 

modeling and education,” in Mathematics in 

Service to the Community: Concepts and 

Models for Service-Learning in the 

Mathematical Sciences, C. Hadlock, Ed., MAA 

Notes #66, pp. 59–68, Washington, DC, USA, 

2005. 

[55]. D. Milligan, “ effect of optional real world 

application projects on mathematics achievement 

among undergraduate students,” Graduate and 

Dissertations, 2007, http:// 

scholarcommons.usf.edu/etd/2290. 

[56]. A. Z. Grinshpan, “Interdisciplinary mathematics 

in STEM education: undergraduate retention and 

research,” in NSF STEP Grantees Meeting: 

Identifying Best Practices, Wash-ington, DC, 

USA, 2014, 

http://stemcentral.net/groups/posts/936/,http://cii

m.usf.edu/docs/NSF_STEP_2014__Interdiscipli
nary_Mathematics_in_STEM_Education.pdf. 

[57]. S. Abramovich and A. Z. Grinshpan, “Bridging 

K-12 and university mathematics: building the 

staircase from the top,” IMVI Open 

Mathematical Education Notes, vol. 2, pp. 1–21, 

2012. 

[58]. G. Fox, S. Campbell, A. Z. Grinshpan et al., 

“Implementing projects in calculus on a large 

scale at the university of South Florida,” Journal 

of STEM Education, vol. 18, no. 3, pp. 30–38, 

2017. 
[59]. N. Isaacs, “Children’s why questions,” in 

Intellectual Growth in Young Children, S. 

Isaacs, Ed., pp. 291–349, Routledge & Kegan 

Paul, London, England, 1930. 

[60]. L. S. Vygotsky, Mind in Society, MIT Press, 

Cambridge, MA, USA, 1978. 

[61]. Ontario Ministry of Education, “ Ontario 

curriculum, grades 1–8, mathematics (revised) 

(on-line materials),” 2005, 

http://www.edu.gov.on.ca. 

[62]. Conference Board of the Mathematical Sciences, 
Math-ematical Education of Teachers II, 

Mathematical Asso-ciation of America, 

Washington, DC, USA, 2012. 

[63]. [64]P. Felmer, R. Lewin, S. Mart´ınez et al., 

Primary Mathematics Standards for Pre-Service 

Teachers in Chile, World Scientific, Singapore, 

2014. 

[64]. Australian Association of Mathematics 

Teachers, “Standards for excellence in teaching 

mathematics in Australian schools (on-line 

materials),” 2006, https://www.aamt.edu.au. 

[65]. Department for Education, “National curriculum 
in En-gland: mathematics programmes of 

study,” Crown Copy-

right,2013,https://www.gov.uk/government/publ

ications/national-curriculum-in-england-

mathematics-programmes-of-study. 

[66]. L. S. Shulman, “Signature pedagogies in the 

professions,” Daedalus, vol. 134, no. 3, pp. 52–

59, 2005. 

[67]. M. J. Dunkin and B. J. Biddle, Study of 

Teaching, Holt, Rinehart & Winston, New York, 

NY, USA, 1974. 

[68]. A. Lizzio, K. Wilson, and R. Simons, 

“University students’ perceptions of the learning 
environment and academic out-comes: 

implications for theory and practice,” Studies in 

Higher Education, vol. 27, no. 1, pp. 27–52, 

2002. 

[69]. S. Abramovich, Exploring Mathematics with 

Integrated Spreadsheets in Teacher Education, 

World Scientific, Singa-pore, 2016. 

[70]. G. Faltings, “ proof of Fermat’s Last theorem by 

R. Taylor and A. Wiles,” Notices of the 

American Mathematical Society, vol. 42, no. 7, 

pp. 743–746, 1995. 
[71]. L. De Branges, “A proof of the Bieberbach 

conjecture,” Acta Mathematica, vol. 154, no. 1-

2, pp. 137–152, 1985. 

[72]. A. Z. Grinshpan, “ Bieberbach conjecture and 

Milin’s functionals,” American Mathematical 

Monthly, vol. 106, no. 3, pp. 203–214, 1999. 

[73]. I. Stewart, “Change,” in On the Shoulders of 

Giants: New Approaches to Numeracy, L. A. 

Steen, Ed., pp. 183–217, National Academies 

Press, Washington, DC, USA, 1990. 

[74]. S. Abramovich, “Revisiting an ancient problem 

through contemporary discourse,” School 
Science and Mathematics, vol. 99, no. 3, pp. 

148–155, 1999. 

[75]. A. Z. Grinshpan, “Logarithmic geometry, 

exponentiation, and coefficient bounds in the 

theory of univalent functions and 

nonoverlapping domains,” in Handbook of 

Complex Analysis: Geometric Function , R. 

K’uhnau, Ed., vol. 1,pp. 273–332, North-

Holland, Amsterdam, Netherlands, 2002. 

[76]. E. W. Weisstein, “Goldbach conjecture,” in 
CRC Concise Encyclopedia of Mathematics, p. 

742, Chapman & Hall/CRC, Washington, DC, 

USA, 1999. 

[77]. E. W. Weisstein, “Palindromic number 

conjecture,” in CRC Concise Encyclopedia of 

Mathematics, pp. 1301-1302, Chap-man & 

Hall/CRC, Washington, DC, USA, 1999. 

[78]. S. W. Williams, “Million-buck problems,” 

Mathematical Intelligencer, vol. 24, no. 3, pp. 

17–20, 2002. 

[79]. S. Abramovich and T. Strock, “Measurement 

model for di-vision as a tool in computing 
applications,” International Journal of 

Mathematical Education in Science and 

Technology, vol. 33, no. 2, pp. 171–185, 2002. 



International Journal of Engineering Research and Application                    www.ijera.com ISSN : 

2248-9622, Vol. 6, Issue 7, ( Part -5) July 2016, pp.63-77 

 
www.ijera.com                                                                                                                                      77 | P a g e  

 

 

 
 

 

[80]. D. E. Smith, A Source Book in Mathematics, 

Vol. 2, Dover, New York, NY, USA, 1959. 

[81]. Holmes Group, Tomorrow’s Schools of 

Education, Holmes Group, East Lansing, MI, 

USA, 1995. 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

P. K. Rout “ Application of Concept Motivation and Action Learning in Mathematics 

Teaching” International Journal of Engineering Research and Applications (IJERA), vol.6(7), 

2016, pp 63-77. 

 


